Amazon cover image
Image from Amazon.com
Image from Google Jackets

Determinantal Rings [electronic resource] / by Winfried Bruns, Udo Vetter.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1327Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1988Description: VIII, 240 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540392743
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 512.2 23
LOC classification:
  • QA174-183
Online resources:
Contents:
Preliminaries -- Ideals of maximal minors -- Generically perfect ideals -- Algebras with straightening law on posets of minors -- The structure of an ASL -- Integrity and normality. The singular locus -- Generic points and invariant theory -- The divisor class group and the canonical class -- Powers of ideals of maximal minors -- Primary decomposition -- Representation theory -- Principal radical systems -- Generic modules -- The module of Kähler differentials -- Derivations and rigidity.
In: Springer eBooksSummary: Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Preliminaries -- Ideals of maximal minors -- Generically perfect ideals -- Algebras with straightening law on posets of minors -- The structure of an ASL -- Integrity and normality. The singular locus -- Generic points and invariant theory -- The divisor class group and the canonical class -- Powers of ideals of maximal minors -- Primary decomposition -- Representation theory -- Principal radical systems -- Generic modules -- The module of Kähler differentials -- Derivations and rigidity.

Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a vast number of notions, results, and techniques can be illustrated significantly by applying them to determinantal rings.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha