Amazon cover image
Image from Amazon.com
Image from Google Jackets

Twistor Theory for Riemannian Symmetric Spaces [electronic resource] : With Applications to Harmonic Maps of Riemann Surfaces / by Francis E. Burstall, John H. Rawnsley.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1424Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 1990Description: 110 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540470526
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.36 23
LOC classification:
  • QA641-670
Online resources:
Contents:
Homogeneous geometry -- Harmonic maps and twistor spaces -- Symmetric spaces -- Flag manifolds -- The twistor space of a Riemannian symmetric space -- Twistor lifts over Riemannian symmetric spaces -- Stable Harmonic 2-spheres -- Factorisation of harmonic spheres in Lie groups.
In: Springer eBooksSummary: In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bäcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Homogeneous geometry -- Harmonic maps and twistor spaces -- Symmetric spaces -- Flag manifolds -- The twistor space of a Riemannian symmetric space -- Twistor lifts over Riemannian symmetric spaces -- Stable Harmonic 2-spheres -- Factorisation of harmonic spheres in Lie groups.

In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bäcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha