Amazon cover image
Image from Amazon.com
Image from Google Jackets

Real Enriques Surfaces [electronic resource] / by Alexander Degtyarev, Ilia Itenberg, Viatcheslav Kharlamov.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1746Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2000Description: XVIII, 266 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540399483
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 516.35 23
LOC classification:
  • QA564-609
Online resources:
Contents:
Topology of involutions -- Integral lattices and quadratic forms -- Algebraic surfaces -- Real surfaces: the topological aspects -- Summary: Deformation Classes -- Topology of real enriques surfaces -- Moduli of real enriques surfaces -- Deformation types: the hyperbolic and parabolic cases -- Deformation types: the elliptic and parabolic cases.
In: Springer eBooksSummary: This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperkähler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Topology of involutions -- Integral lattices and quadratic forms -- Algebraic surfaces -- Real surfaces: the topological aspects -- Summary: Deformation Classes -- Topology of real enriques surfaces -- Moduli of real enriques surfaces -- Deformation types: the hyperbolic and parabolic cases -- Deformation types: the elliptic and parabolic cases.

This is the first attempt of a systematic study of real Enriques surfaces culminating in their classification up to deformation. Simple explicit topological invariants are elaborated for identifying the deformation classes of real Enriques surfaces. Some of theses are new and can be applied to other classes of surfaces or higher-dimensional varieties. Intended for researchers and graduate students in real algebraic geometry it may also interest others who want to become familiar with the field and its techniques. The study relies on topology of involutions, arithmetics of integral quadratic forms, algebraic geometry of surfaces, and the hyperkähler structure of K3-surfaces. A comprehensive summary of the necessary results and techniques from each of these fields is included. Some results are developed further, e.g., a detailed study of lattices with a pair of commuting involutions and a certain class of rational complex surfaces.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha