000 | 03067nam a22004695i 4500 | ||
---|---|---|---|
001 | 978-3-540-35715-5 | ||
003 | DE-He213 | ||
005 | 20190213151506.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s1978 gw | s |||| 0|eng d | ||
020 |
_a9783540357155 _9978-3-540-35715-5 |
||
024 | 7 |
_a10.1007/BFb0067861 _2doi |
|
050 | 4 | _aQA1-939 | |
072 | 7 |
_aPB _2bicssc |
|
072 | 7 |
_aMAT000000 _2bisacsh |
|
072 | 7 |
_aPB _2thema |
|
082 | 0 | 4 |
_a510 _223 |
245 | 1 | 0 |
_aNumerical Treatment of Differential Equations in Applications _h[electronic resource] : _bProceedings, Oberwolfach, Germany, December 1977 / _cedited by Rainer Ansorge, Willi Törnig. |
246 | 3 | _aWith contributions by numerous experts | |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c1978. |
|
300 |
_aXII, 168 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v679 |
|
505 | 0 | _aOn two boundary value problems in nonlinear elasticity from a numerical viewpoint -- A revised mesh refinement strategy for newton’s method applied to nonlinear two-point boundary value problems -- Problems in applying the SOR-method to the solution of the Maxwell’s time dependent equations -- Boundary-value technique for the numerical solution of periodic parabolic problems -- Time-discretisations for nonlinear evolution equations -- Frequency fitting in the numerical solution of ordinary differential equations -- Forced nonlinear oscillation for certain third order differential equation -- Sufficient conditions for the convergence, uniformly in ?, of a three point difference scheme for a singular perturbation problem -- Experiences on numerical calculation of fields -- An application of the differential equations of the sound ray -- On using the du fort frankel scheme for determination of the velocity profile in turbulent boundary layer along an oscillating wall -- On the numerical solution of nonlinear and functional differential equations with the tau method -- On the uniqueness and stability of weak solutions of a fokker-planck-vlasov equation -- On iterative solution methods for systems of partial differential equations. | |
650 | 0 | _aMathematics. | |
650 | 1 | 4 |
_aMathematics, general. _0http://scigraph.springernature.com/things/product-market-codes/M00009 |
700 | 1 |
_aAnsorge, Rainer. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aTörnig, Willi. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783662193259 |
776 | 0 | 8 |
_iPrinted edition: _z9783540089407 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v679 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/BFb0067861 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
912 | _aZDB-2-BAE | ||
999 |
_c10863 _d10863 |