000 03457nam a22005295i 4500
001 978-3-540-36210-4
003 DE-He213
005 20190213151558.0
007 cr nn 008mamaa
008 121227s2003 gw | s |||| 0|eng d
020 _a9783540362104
_9978-3-540-36210-4
024 7 _a10.1007/b80163
_2doi
050 4 _aQA312-312.5
072 7 _aPBKL
_2bicssc
072 7 _aMAT034000
_2bisacsh
072 7 _aPBKL
_2thema
082 0 4 _a515.42
_223
100 1 _aSchindler, Werner.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aMeasures with Symmetry Properties
_h[electronic resource] /
_cby Werner Schindler.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2003.
300 _aX, 174 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1808
505 0 _aIntroduction, Main Theorems: Definitions and Preparatory Lemmata; Definition of Property (*) and Its Implications (Main Theorems); Supplementary Expositions and an Alternate Existence Proof -- Significance, Applicability and Advantages -- Applications: Central Definitions, Theorems and Facts; Equidistribution on the Grassmannian Manifold and Chirotopes; Conjugation-invariant Probability Measures on Compact Connected Lie Groups; Conjugation-invariant Probability Measures on SO(n); Conjugation-invariant Probability Measures on SO(3); The Theorem of Iwasawa and Invariant Measures on Lie Groups; QR-Decomposition on GL(n); Polar Decomposition on GL(n); O(n)-invariant Borel Measures on Pos(n); Biinvariant Borel Measures on GL(n); Symmetries on Finite Spaces -- References -- Glossary -- Index.
520 _aSymmetries and invariance principles play an important role in various branches of mathematics. This book deals with measures having weak symmetry properties. Even mild conditions ensure that all invariant Borel measures on a second countable locally compact space can be expressed as images of specific product measures under a fixed mapping. The results derived in this book are interesting for their own and, moreover, a number of carefully investigated examples underline and illustrate their usefulness and applicability for integration problems, stochastic simulations and statistical applications.
650 0 _aMathematics.
650 0 _aTopological Groups.
650 0 _aNumerical analysis.
650 0 _aMathematical statistics.
650 1 4 _aMeasure and Integration.
_0http://scigraph.springernature.com/things/product-market-codes/M12120
650 2 4 _aTopological Groups, Lie Groups.
_0http://scigraph.springernature.com/things/product-market-codes/M11132
650 2 4 _aNumerical Analysis.
_0http://scigraph.springernature.com/things/product-market-codes/M14050
650 2 4 _aStatistical Theory and Methods.
_0http://scigraph.springernature.com/things/product-market-codes/S11001
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540002352
776 0 8 _iPrinted edition:
_z9783662165584
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1808
856 4 0 _uhttps://doi.org/10.1007/b80163
912 _aZDB-2-SMA
912 _aZDB-2-LNM
912 _aZDB-2-BAE
999 _c11164
_d11164