000 02538nam a22005055i 4500
001 978-3-540-68347-6
003 DE-He213
005 20190213151654.0
007 cr nn 008mamaa
008 121227s1997 gw | s |||| 0|eng d
020 _a9783540683476
_9978-3-540-68347-6
024 7 _a10.1007/BFb0093387
_2doi
050 4 _aQA613-613.8
050 4 _aQA613.6-613.66
072 7 _aPBMS
_2bicssc
072 7 _aMAT038000
_2bisacsh
072 7 _aPBMS
_2thema
072 7 _aPBPH
_2thema
082 0 4 _a514.34
_223
100 1 _aGhrist, Robert W.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aKnots and Links in Three-Dimensional Flows
_h[electronic resource] /
_cby Robert W. Ghrist, Philip J. Holmes, Michael C. Sullivan.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c1997.
300 _aX, 214 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1654
505 0 _aPrerequisites -- Templates -- Template theory -- Bifurcations -- Invariants -- Concluding remarks.
520 _aThe closed orbits of three-dimensional flows form knots and links. This book develops the tools - template theory and symbolic dynamics - needed for studying knotted orbits. This theory is applied to the problems of understanding local and global bifurcations, as well as the embedding data of orbits in Morse-smale, Smale, and integrable Hamiltonian flows. The necesssary background theory is sketched; however, some familiarity with low-dimensional topology and differential equations is assumed.
650 0 _aCell aggregation
_xMathematics.
650 1 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
_0http://scigraph.springernature.com/things/product-market-codes/M28027
700 1 _aHolmes, Philip J.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aSullivan, Michael C.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783662198964
776 0 8 _iPrinted edition:
_z9783540626282
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1654
856 4 0 _uhttps://doi.org/10.1007/BFb0093387
912 _aZDB-2-SMA
912 _aZDB-2-LNM
912 _aZDB-2-BAE
999 _c11489
_d11489