000 03304nam a22005415i 4500
001 978-3-642-12589-8
003 DE-He213
005 20190213151034.0
007 cr nn 008mamaa
008 100623s2010 gw | s |||| 0|eng d
020 _a9783642125898
_9978-3-642-12589-8
024 7 _a10.1007/978-3-642-12589-8
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
072 7 _aPBMW
_2thema
082 0 4 _a516.35
_223
100 1 _aBanagl, Markus.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aIntersection Spaces, Spatial Homology Truncation, and String Theory
_h[electronic resource] /
_cby Markus Banagl.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2010.
300 _aXVI, 224 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1997
520 _aIntersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
650 0 _aGeometry, algebraic.
650 0 _aGeometry.
650 0 _aAlgebraic topology.
650 0 _aTopology.
650 0 _aCell aggregation
_xMathematics.
650 1 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aGeometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21006
650 2 4 _aAlgebraic Topology.
_0http://scigraph.springernature.com/things/product-market-codes/M28019
650 2 4 _aTopology.
_0http://scigraph.springernature.com/things/product-market-codes/M28000
650 2 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
_0http://scigraph.springernature.com/things/product-market-codes/M28027
650 2 4 _aQuantum Field Theories, String Theory.
_0http://scigraph.springernature.com/things/product-market-codes/P19048
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642125881
776 0 8 _iPrinted edition:
_z9783642125904
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1997
856 4 0 _uhttps://doi.org/10.1007/978-3-642-12589-8
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c9299
_d9299