000 03338nam a22005415i 4500
001 978-3-540-47628-3
003 DE-He213
005 20190213151140.0
007 cr nn 008mamaa
008 121227s1993 gw | s |||| 0|eng d
020 _a9783540476283
_9978-3-540-47628-3
024 7 _a10.1007/BFb0086765
_2doi
050 4 _aQA613-613.8
050 4 _aQA613.6-613.66
072 7 _aPBMS
_2bicssc
072 7 _aMAT038000
_2bisacsh
072 7 _aPBMS
_2thema
072 7 _aPBPH
_2thema
082 0 4 _a514.34
_223
100 1 _aMorgan, John W.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aDifferential Topology of Complex Surfaces
_h[electronic resource] :
_bElliptic Surfaces with p g =1: Smooth Classification /
_cby John W. Morgan, Kieran G. O’Grady.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c1993.
300 _aVII, 224 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1545
505 0 _aUnstable polynomials of algebraic surfaces -- Identification of ?3,r (S, H) with ?3(S) -- Certain moduli spaces for bundles on elliptic surfaces with p g = 1 -- Representatives for classes in the image of the ?-map -- The blow-up formula -- The proof of Theorem 1.1.1.
520 _aThis book is about the smooth classification of a certain class of algebraicsurfaces, namely regular elliptic surfaces of geometric genus one, i.e. elliptic surfaces with b1 = 0 and b2+ = 3. The authors give a complete classification of these surfaces up to diffeomorphism. They achieve this result by partially computing one of Donalson's polynomial invariants. The computation is carried out using techniques from algebraic geometry. In these computations both thebasic facts about the Donaldson invariants and the relationship of the moduli space of ASD connections with the moduli space of stable bundles are assumed known. Some familiarity with the basic facts of the theory of moduliof sheaves and bundles on a surface is also assumed. This work gives a good and fairly comprehensive indication of how the methods of algebraic geometry can be used to compute Donaldson invariants.
650 0 _aCell aggregation
_xMathematics.
650 0 _aGeometry, algebraic.
650 0 _aGlobal differential geometry.
650 1 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
_0http://scigraph.springernature.com/things/product-market-codes/M28027
650 2 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aDifferential Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21022
700 1 _aO’Grady, Kieran G.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540566748
776 0 8 _iPrinted edition:
_z9783662210819
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1545
856 4 0 _uhttps://doi.org/10.1007/BFb0086765
912 _aZDB-2-SMA
912 _aZDB-2-LNM
912 _aZDB-2-BAE
999 _c9687
_d9687