000 03560nam a22005295i 4500
001 978-3-540-48424-0
003 DE-He213
005 20190213151143.0
007 cr nn 008mamaa
008 121227s1999 gw | s |||| 0|eng d
020 _a9783540484240
_9978-3-540-48424-0
024 7 _a10.1007/BFb0092569
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
072 7 _aPBMW
_2thema
082 0 4 _a516.35
_223
100 1 _aZuo, Kang.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aRepresentations of Fundamental Groups of Algebraic Varieties
_h[electronic resource] /
_cby Kang Zuo.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c1999.
300 _aX, 135 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1708
505 0 _aIntroduction -- Preliminaries -- Review of Algebraic groups over arbitrary fields -- Representations of phi1 and the Moduli space -- p-adic norm on a vector space and Bruhat-Tits buildings -- Harmonic metric on flat vector bundle -- Pluriharmonic map of finite energy -- Pluriharmonic maps of possibly infinite energy but with controlled growth at infinity -- Non-abelian Hodge theory, factorization theorems for non rigid or p-adic unbound representations -- Higgs bundles for archimedean representations and equivariant holomorphic 1-forms for p-adic representations -- Albanese maps and a Lefschetz type theorem for holomorphic 1-forms -- Factorizations for nonrigid representations into almost simple complex algebraic groups -- Factorization for p-adic unbounded representations into almost simple p-adic algebraic groups -- Simpson's construction of families on non rigid representations -- Shavarevich maps for representations of phi1, Kodaira dimension and Chern-hyperbolicity of Shavarevich varieties...
520 _aUsing harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area.
650 0 _aGeometry, algebraic.
650 0 _aMathematics.
650 0 _aGlobal analysis.
650 0 _aAlgebraic topology.
650 1 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aApplications of Mathematics.
_0http://scigraph.springernature.com/things/product-market-codes/M13003
650 2 4 _aGlobal Analysis and Analysis on Manifolds.
_0http://scigraph.springernature.com/things/product-market-codes/M12082
650 2 4 _aAlgebraic Topology.
_0http://scigraph.springernature.com/things/product-market-codes/M28019
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783662179819
776 0 8 _iPrinted edition:
_z9783540663126
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1708
856 4 0 _uhttps://doi.org/10.1007/BFb0092569
912 _aZDB-2-SMA
912 _aZDB-2-LNM
912 _aZDB-2-BAE
999 _c9703
_d9703