000 | 03560nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-540-48424-0 | ||
003 | DE-He213 | ||
005 | 20190213151143.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s1999 gw | s |||| 0|eng d | ||
020 |
_a9783540484240 _9978-3-540-48424-0 |
||
024 | 7 |
_a10.1007/BFb0092569 _2doi |
|
050 | 4 | _aQA564-609 | |
072 | 7 |
_aPBMW _2bicssc |
|
072 | 7 |
_aMAT012010 _2bisacsh |
|
072 | 7 |
_aPBMW _2thema |
|
082 | 0 | 4 |
_a516.35 _223 |
100 | 1 |
_aZuo, Kang. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aRepresentations of Fundamental Groups of Algebraic Varieties _h[electronic resource] / _cby Kang Zuo. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c1999. |
|
300 |
_aX, 135 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1708 |
|
505 | 0 | _aIntroduction -- Preliminaries -- Review of Algebraic groups over arbitrary fields -- Representations of phi1 and the Moduli space -- p-adic norm on a vector space and Bruhat-Tits buildings -- Harmonic metric on flat vector bundle -- Pluriharmonic map of finite energy -- Pluriharmonic maps of possibly infinite energy but with controlled growth at infinity -- Non-abelian Hodge theory, factorization theorems for non rigid or p-adic unbound representations -- Higgs bundles for archimedean representations and equivariant holomorphic 1-forms for p-adic representations -- Albanese maps and a Lefschetz type theorem for holomorphic 1-forms -- Factorizations for nonrigid representations into almost simple complex algebraic groups -- Factorization for p-adic unbounded representations into almost simple p-adic algebraic groups -- Simpson's construction of families on non rigid representations -- Shavarevich maps for representations of phi1, Kodaira dimension and Chern-hyperbolicity of Shavarevich varieties... | |
520 | _aUsing harmonic maps, non-linear PDE and techniques from algebraic geometry this book enables the reader to study the relation between fundamental groups and algebraic geometry invariants of algebraic varieties. The reader should have a basic knowledge of algebraic geometry and non-linear analysis. This book can form the basis for graduate level seminars in the area of topology of algebraic varieties. It also contains present new techniques for researchers working in this area. | ||
650 | 0 | _aGeometry, algebraic. | |
650 | 0 | _aMathematics. | |
650 | 0 | _aGlobal analysis. | |
650 | 0 | _aAlgebraic topology. | |
650 | 1 | 4 |
_aAlgebraic Geometry. _0http://scigraph.springernature.com/things/product-market-codes/M11019 |
650 | 2 | 4 |
_aApplications of Mathematics. _0http://scigraph.springernature.com/things/product-market-codes/M13003 |
650 | 2 | 4 |
_aGlobal Analysis and Analysis on Manifolds. _0http://scigraph.springernature.com/things/product-market-codes/M12082 |
650 | 2 | 4 |
_aAlgebraic Topology. _0http://scigraph.springernature.com/things/product-market-codes/M28019 |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783662179819 |
776 | 0 | 8 |
_iPrinted edition: _z9783540663126 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1708 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/BFb0092569 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
912 | _aZDB-2-BAE | ||
999 |
_c9703 _d9703 |