000 03232nam a22005175i 4500
001 978-3-540-47052-6
003 DE-He213
005 20190213151207.0
007 cr nn 008mamaa
008 121227s1990 gw | s |||| 0|eng d
020 _a9783540470526
_9978-3-540-47052-6
024 7 _a10.1007/BFb0095561
_2doi
050 4 _aQA641-670
072 7 _aPBMP
_2bicssc
072 7 _aMAT012030
_2bisacsh
072 7 _aPBMP
_2thema
082 0 4 _a516.36
_223
100 1 _aBurstall, Francis E.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aTwistor Theory for Riemannian Symmetric Spaces
_h[electronic resource] :
_bWith Applications to Harmonic Maps of Riemann Surfaces /
_cby Francis E. Burstall, John H. Rawnsley.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c1990.
300 _a110 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1424
505 0 _aHomogeneous geometry -- Harmonic maps and twistor spaces -- Symmetric spaces -- Flag manifolds -- The twistor space of a Riemannian symmetric space -- Twistor lifts over Riemannian symmetric spaces -- Stable Harmonic 2-spheres -- Factorisation of harmonic spheres in Lie groups.
520 _aIn this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifolds are shown to arise as twistor spaces of Riemannian symmetric spaces. Applications of this theory include a complete classification of stable harmonic 2-spheres in Riemannian symmetric spaces and a Bäcklund transform for harmonic 2-spheres in Lie groups which, in many cases, provides a factorisation theorem for such spheres as well as gap phenomena. The main methods used are those of homogeneous geometry and Lie theory together with some algebraic geometry of Riemann surfaces. The work addresses differential geometers, especially those with interests in minimal surfaces and homogeneous manifolds.
650 0 _aGlobal differential geometry.
650 0 _aTopological Groups.
650 0 _aFourier analysis.
650 1 4 _aDifferential Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21022
650 2 4 _aTopological Groups, Lie Groups.
_0http://scigraph.springernature.com/things/product-market-codes/M11132
650 2 4 _aFourier Analysis.
_0http://scigraph.springernature.com/things/product-market-codes/M12058
700 1 _aRawnsley, John H.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783540526025
776 0 8 _iPrinted edition:
_z9783662186916
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1424
856 4 0 _uhttps://doi.org/10.1007/BFb0095561
912 _aZDB-2-SMA
912 _aZDB-2-LNM
912 _aZDB-2-BAE
999 _c9841
_d9841